Building a home lab : From OK to Bada\$\$\$

By Maxime Mercier

Disclaimer

- The following presentation is a generic guideline on building a home lab.
- It should not be used for production servers without proper redundancy
- I, Maxime Mercier, should not be held responsible for any problems that might occur while following this guideline to build your own specific server.

The basics

- ▹ Who am I?
- What are your needs?
- Your budget
- Components analysis
- Conclusion

Who am I?

- Hardware enthusiast since 1994
 - \rightarrow I was taking apart my 1st 486 at the age of 13
 - Adding parts and overclocking it at 14
 - I choose all my computers parts for every PC I bought after that
 - More recently, I modified a LGA771 x5470 to fit in a socket 775 Asus motherboard with modded bios. I'm running it stable on air at 3.8Ghz
- Freeloader and sometime helper at the Hackfest
 - → I enjoy spending time with those guys
 - I played a main part in making "Hackfest City"
 - They gave me the nickname "The hacking plumber"

Figuring out the needs

- ▹ What do you want to use it for
 - → A small lab to play with
 - A medium size lab to host a few VM for personal use
 - A big lab to simulate a business environment
 - Servers types
 - Your old desktop
 - A used workstation
 - → A tower server
 - → A half-length server
 - → A full length server

Figuring out the needs

- What will it run
 - \rightarrow A firewall
 - Network interfaces
 - A single OS
 - Differents OS have differents needs
 - → Hypervisor
 - Vmware -- More hardware dependent
 - Proxmox -- Eats up ram GB like candies.
 - Few VMs
 - A bunch
 - Tons !!!

Figuring out the needs

- → Low budget < 500\$</p>
 - Aim for high production olders servers (x54XX) 1u are cheaper
 Older generations tend to be louder and 1u are louder than 2u.
 - Use an old desktop
 - Workstation and tower server are affordable
 - Medium budget 500\$ to 1500\$
 - High end older servers (x56XX serie cpu)
 - More hdds
 - More RAM
 - Possible to find a half-length server running a xeon e3
- High budget > 1500\$ Get what you want
 - E5 v4
 - Tons of ram
 - Bigger/more hdds

Server CPU generations

Generation	Socket	Core number	Speed	Cache	RAM	Lithography	Rating	
51XX	LGA771	2	2.13 à 3 Ghz	4 MB	Chip Dual	65 nm	35 à 80 W	
52XX	LGA771	2	1.86 à 3.5 Ghz	6 MB	Chip Dual	45 nm	20 à 80 W	
53XX	PLGA771	4	1.6 à 3.0 Ghz	8 MB	Chip Dual	65 nm	40 à 150 W	
54XX	LGA771	4	2.13 à 3.4 Ghz	12 MB	Chip Dual	45 nm	40 à 150 W	
55XX	FCLGA1366	2ht à 4ht	1.86 à 3.3 Ghz	4 à 8 MB	Int. 144 GB Triple	45 nm	80 à 130 W	
56XX	FCLGA1366	2ht à 6ht	1.6 à 3.6 Ghz	4 à 12 MB	Int. 144 GB Triple	32 nm	40 à 130 W	
E5-26XX	FCLGA2011	2ht à 8ht	1.8 à 3.3 Ghz	5 à 20 MB	Int. 384 GB Quad	32 nm	60 à 150 W	
E5-26XX v2	FCLGA2011	4ht à 12ht	1.7 à 3.5 Ghz	10 à 30 MB	Int. 768 GB Quad	22 nm	50 à 150 W	
E5-26XX v3	FLCLGA2011-3	4ht à 18ht	1.6 À 3.5 Ghz	10 à 45 MB	Int. 768 GB Quad	22 nm	55 à 160 W	
E5-26XX v4	FLCLGA2011-3	4ht à 22ht	1.7 à 3.5 Ghz	10 à 55 MB	Int. 1.54 TB Quad	14 nm	55 à 160 W	

Server CPU - Side notes

r Thermal envelope (Rating)

- → Isn't the CPU Watts consumption, It is the heat dissipation needed from the server
- Higher end CPU lower their consumption while idling

CREE

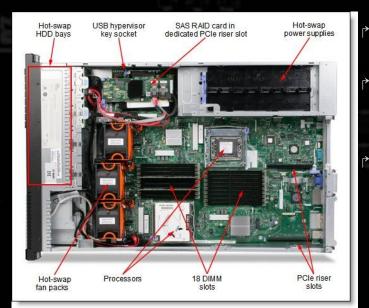
Server CPU - Side notes

- Parallele Xeon line-up
 - → x34XX serie Socket 1056
 - Basically a desktop CPU with Xeon name

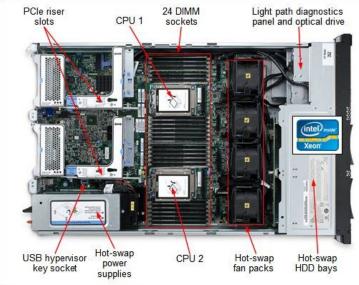
→ x75XX

- For quad cpu configuration. Based on the x55XX serie
- → E3 serie Socket 1055, 1050
 - Same as the x34XX serie. Desktop clone
- → e5-24XX serie Socket 1356
 - Triple channel (Bad batch?) xeon e5
- → E7 serie various socket
 - Basically for quad cpu configuration
 - When you really need the horsepower

- Buffered/Registered
 - Made for servers
 - Can be of much bigger capacity
 - \rightarrow Come with ECC to detect data corruption
- Unbuffered
 - → Made for desktop or low-cost servers
 - Smaller capacity
 - May have ECC but are much more expensive on ebay


- - → Use ddr2 (pc2)
 - → Higher voltage required (1.5V to 1.8V)
 - → From 400Mhz to 800Mhz
 - → Can go in dual channel memory configuration
 - \rightarrow Up to 8GB dimms in some systems

- - \rightarrow The chipset run the memory
 - The CPUs access the chipset
 To reach the RAM
 - Only support 4gb DIMMS
 - → Only support Dual core cpus


- Affordable generation (FCLGA1366) and \$\$ Generation (FCLGA2011)
 - → Use ddr3 (pc3 pc3l)
 - Voltage required (1.35V to 1.5V)
 - → From 800Mhz to 1866Mhz
 - \rightarrow Can go in triple and quad channel memory configuration
 - → Up to 16GB dimms

Dual FCLGA1366 - x3650 m3

The cpu run the memory The dimms are closer to the CPU RtM, can't put them all over the place.

Dual FCLGA2011 - x3650 m4

- r Expen\$\$\$ive generation (FCLGA2011-3)
 - → Use ddr4 (pc4)
 - Voltage required (1.2V)
 - → From 1600Mhz to 2400Mhz
 - Can go in quad channel memory configuration
 - → 32GB dimm\$\$\$ can be found

- In server memory, ranks are important Ex: a dual FCLGA1366
 - Can only support 12 4rx4 PC3 dimms
 - \rightarrow It can support up to 18 PC3 dimms in 1rx8, 2rx8 or 2rx4
 - Those rank can be compared to multi threads
 - → 2rx* will perform better than 1rx*
- - → 3 dimms/cpu = max 1333mhz
 - → 6 dimms/cpu = max 1066mhz
 - → 9 dimms/cpu = max 800mhz
- Mhz isn't the only important number. Latency play a role
 - → Low latency PC3 1333 can perform better than high latency PC4 1866

CPU types - Evolution and differences

r → LGA771

- → Memory controller isn't in the CPU.
- Memory capacity influenced by the chipset, mostly 48GB max
- → May support 8GB PC2 dimms
- → Dual channel is possible
- → Up to 4 cores

FCLGA1366 - Personal favorite

- Memory controller integrated in the CPU
- Can run up to 144GB/CPU using 16gb 2rx4 dimms with the 56XX serie
- → Triple channel is possible
- Up to 6 cores with hyperthreading

- Memory controller integrated in the CPU
- Can deal with more ram that you will need
- → Quad channel possible
- ightarrow Tons of cores for hundreds of VMs

CPU types - Side notes

- → W34XX and xeon E3
 - A desktop knock-off CPU with xeon name on it
 - → Basically the same as the desktop version without overclocking potential
 - → Can run ECC dimms, but unbuffered --> \$\$\$
 - → Will be used in half-length or single socket servers
 - Mostly support only 32GB RAM
 - The servers using those haven't been mass-produced
 - Cost much more on ebay
 - Rarely seen too
 - Better off with a workstation

CPU types - xeon E3

Dell r210

Intel® Xeon® Processor E3 Product Family Options

Hdds - SAS/Sata controller, SSD

- Server onboard controller is sata Can't run SAS drives
 - → Use it for cd/dvd-rom
 - → You can connect your sata drives with it
 - Proxmox don't mind
- Dedicated SAS controller card Can run Sata drives
 - → Without integrated cache
 - Proxmox is fine with it. Make sure it support JBOD for Proxmox (google it)
 - Vmware will be slower
 - With integrated cache
 - Proxmox is fine with it (he won't use it with zfs) but make sure it support JBOD
 - Great with Vmware as long it as a BBU to protect the card cache
 - Without BBU, make sure you have a UPS protection
- r SSDs
 - Better with TRIM for longevity
 - Proxmox use it as write cache (Proxmox don't support TRIM yet)

Hdds - SAS/Sata controller, SSD

IBM m1015, no cache no BBU

IBM m5015 512MB cache & BBU

Network interfaces

- Not all network controller are equals
 - → Realtek … Really?
 - → Intel and broadcom chipset perform better
 - → Easy to find cards with 4 1Gb ports
 - Team them up for added speed/redundancy
 - \rightarrow 10Gb cards are expensives and you need a switch that connect to it
 - → Higher end chipset offload the cpu in network tasks
 - Intel i340, i350
 - \rightarrow The more you have, the better for a firewall

Hackfest servers

- P Before 2015
 - \rightarrow Bests servers where dual xeons 5160 to run the events
 - At most they had 48GB ram
 - \rightarrow A few SAS drives from 73GB to 300GB in raid 10 all 3.5 inches
- After 2015
 - → 4 servers
 - → Dual xeons x5650, x5670
 - → 144GB ram each servers
 - SAS drives from 146GB to 900GB all 2.5 inches
- - → Added a dual x5680 with 160GB ram to run the multiple VMs

Hackfest servers - 2017 - x3650 m3

- r r l've lend them a IBM x3650 m3 to use with their servers
 - → Dual x5680@3.33Ghz for 12 cores / 24 threads
 - 160GB ram in triple channel configuration on cpu0 and dual channel on cpu1
 - Not optimal, but I used some spare parts
 - Official version use 18x 8GB PC3L dimms in triple channels for 144GB total
 - → 8x 146GB 15k 2.5" in raid 10 configuration. 6 for the array and 2 hots spares
 - Dual backplane configuration to support up to 16 drives
 - 4 Hdds on each backplanes for added redundancy
 - Each backplane has 3 Raid 0 hdds + 1 hot spare. The other mirror it (Raid 1)
- r It ran a bunch of stuff for HF2017
 - → 17 teams with 5 VMs each where on it
 - 4 out of 5 VMs where Windows
 - → ~70GB of total Hdds space was used using ZFS cloning capacity
 - This show in labs environments, big hdds capacity may not be a factor
 - Better with fast hdds (15k) and tons of RAM

My home server

- → IBM Tower server x3500 m3
 - → Dual L5640@2.26Ghz for 12 cores / 24 threads
 - 60W rated cpus for low power usage
 - → 96Gb ram in triple channel configuration
 - 6x 16GB PC3L dimms running at 1333Mhz
 - → 8x 146GB 15k 2.5" in raid 10 configuration. 6 for the array and 2 hots spares
 - → 1x 4TB HGST 7.2K 3.5" (Should be in raid 1, I know)
- r It use it to:
 - → Run 2 Pfsenses in CARP
 - A bunch of Debian to run games servers
 - → A FreeBSD for network shares
 - → An AD (wip) Time restriction with home tasks...
 - Personal Web pages hosting
 - → A winXP bitch for unsafe .exe

Conclusion

- To reduce costs, aim for mass productions servers
 - → 1u Dell r610, HP dl360 g6-g7, lbm x3550 m2-m3
 - → 2u Dell r710, HP dl380 g6-g7, lbm x3650 m2-m3
 - 1u servers are cheaper than 2u but louder
 - → Tower servers and workstations often allow for more upgrades options and make less noises
 - → Buy your ram and hdd in bulk
 - → Team up with friends to reduce shipping/import costs
- Choose your hypervisor before buying parts
 - Vmware is more hardware dependent
 - SAS controller with cache & BBU
 - Proxmox with zfs need ram
 - +72gb memory to make it comfortable

Special thanks to Martin Dubé who let me use his template

ASUS BIOS Version : 1305 Build Date: 06/19/09 Processor Type : Intel(R) Xeon(R) CPU X5470 @ 3.33GHz Speed : 3350MHz Count : 4 System Memory Available : 6144MB ++ 11 F1 F10 ESC

→ Selec Select Genera 0 Save an C Exit